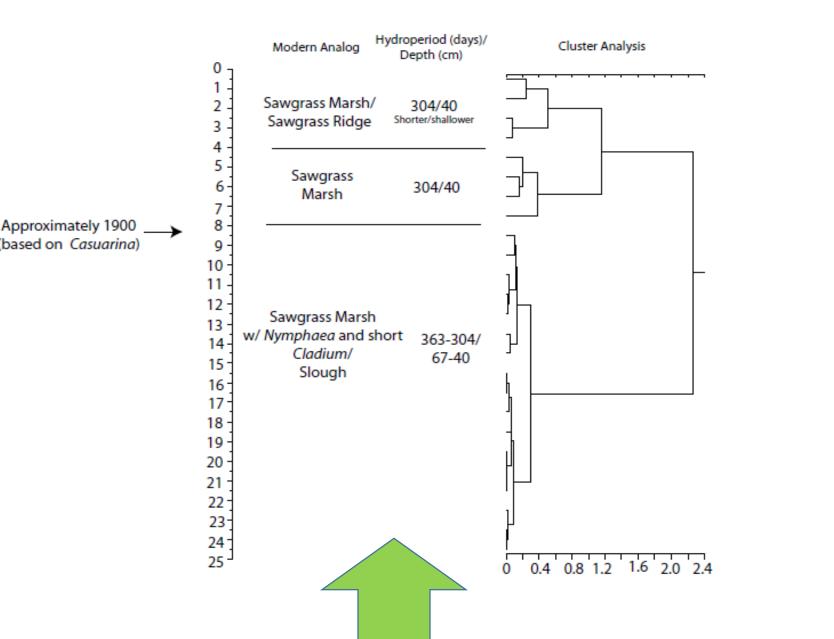
Coupling Paleoecological Data and Model-Produced Hydrology to Estimate Circa 1900 CE Conditions in Freshwater Marshes and Marl Prairies within **Everglades National Park (ENP)**

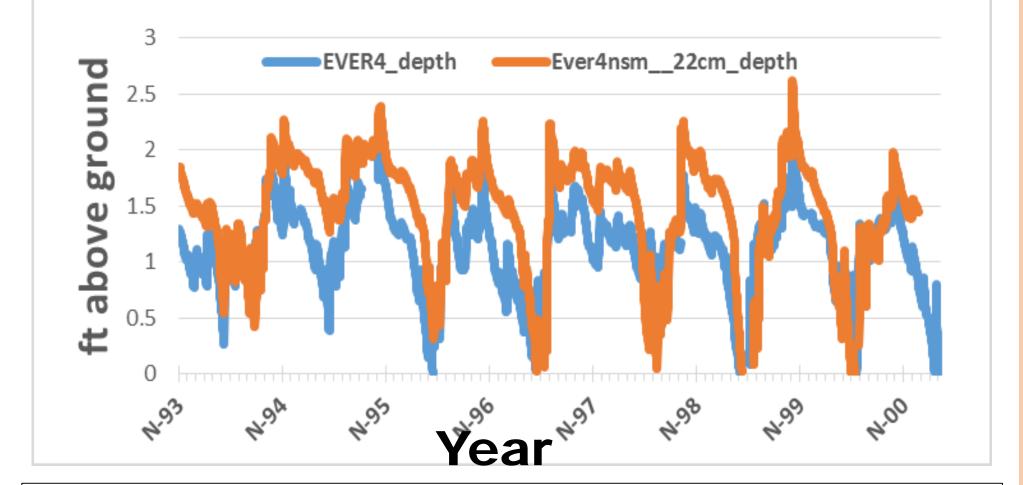
Frank E. Marshall¹, Christopher E. Bernhardt², and G. Lynn Wingard² ¹Cetacean Logic Foundation, New Smyrna Beach, FL; clfinc@earthlink.net ²U.S. Geological Survey, Reston, VA

Introduction


Paleoecological data from three sediment cores collected by the USGS from freshwater marshes and marl prairies in ENP were interpreted and coupled with model-produced data to estimate the predrainage hydrologic regime (stage and flow) in the Everglades within ENP.

Each sediment core was located relatively close to an existing ENP stage monitoring station. The proximity of the stations facilitated the use of statistical and numeric models coupled with the paleoecological data to produce time series simulations of the pre-drainage water levels in a Shark River Slough marsh, a marl prairie community east of Shark River Slough, and a marl prairie community east of Taylor Slough.

Methods – Three Sediment Cores


Step 1: Analyze sediment core

Result: Pre-drainage conditions are a hydroperiod of 304-363 days with an average max. depth of 40-67 cm. Modern analog - hydroperiod estimate for core 08-08-4-1a (Station EVER4)

Results – Sediment Core Number 3

Step 3 Results: Observed water levels @ EVER4 (EVER4_depth) compared to simulated water levels from NSM minus 22 cm adjustment (based on sediment core analysis)

Objectives – Three Sediment Cores

The objectives of this research are:

- 1. estimate the pre-drainage freshwater wetland water levels in Everglades National Park
- 2. couple that information with hydrologic model output
- 3. use statistical models to estimate the salinity conditions in Florida Bay.

Study Area – Sediment Core Number 3

Step 2: Using NSM 4.62 match the pre-drainage conditions in the sediment core with statistics of time series (daily) data distribution – range and median of 304-363 day hydroperiod with water depths of 40-67 cm. A 22 cm adjustment to NSM is best fit to these characteristics.

Hydrope year	N_17_5	year	N 20	year	N_22	year	N_24	year	N 29
, 199		, 1990	 149	, 1990	<u> </u>	, 1990	 166	, 1990	 185
198	9 144	1971	165	1971	169	1971	174	1971	190
197	1 149	1989	166	1989	182	1989	197	1965	220
198	5 196	1985	204	1985	208	1985	215	1989	231
196	5 212	1965	214	1965	215	1965	216	1985	234
198	7 212	1987	217	1975	222	1975	228	1975	236
197	5 215	1975	220	1987	223	1987	230	1987	252
197	4 221	1974	224	1974	227	1974	235	1974	254
198	1 249	1981	255	1981	257	1981	259	1981	268
197	6 282	1976	293	1976	298	1976	305	1973	315
199	1 290	1991	298	1973	305	1973	307	1976	315
197	3 299	1973	304	1991	305	1991	312	1986	324
197	2 301	1988	309	1988	312	1988	316	1967	329
198	8 303	1986	314	1986	314	1986	317	1984	329
198	306	1984	316	1984	318	1984	323	1988	330
198	4 310	1967	320	1967	321	1967	325	1991	330
196	7 317	1999	323	1999	324	1999	326	1999	333
199	9 <mark>318</mark>	1972	324	1972	332	1977	336	1968	343
197	7 327	1977	331	1977	332	1968	339	1977	346
196	8 334	1968	337	1968	338	1972	339	1972	354
198	2 337	2000	342	2000	345	1979	349	1979	354
200	337	1982	345	1979	348	2000	350	1970	357
199	2 342	1979	347	1992	349	1992	352	1992	358
197	9 343	1992	347	1982	350	1970	353	2000	358
197	345	1970	349	1970	351	1982	353	1982	361
199	3 351	1993	354	1993	355	1993	356	1993	363
199	7 354	1997	363	1966	364	1966	364	1966	364
199	8 361	1998	364	1969	364	1969	364	1969	364
196	6 364	1966	365	1978	364	1978	364	1978	364
196	9 364	1969	365	1983	364	1983	364	1983	364
197	8 364	1978	365	1994	364	1994	364	1994	364
198	3 364	1983	365	1995	364	1995	364	1995	364
199	4 364	1994	365	1997	364	1997	364	1997	364
199	5 364	1995	365	1998	364	1998	364	1998	364
198	0 365	1980	366	1980	365	1980	365	1980	365
199	6 365	1996	366	1996	365	1996	365	1996	365
								wthin	
					mid of o	core range		range of	
_egend		median			(333)			core	

Step 4 Results: Paleo-based salinity @ FL Bay stations using adjusted NSM as input to MLR salinity models vs observed

FL Bay		Obs.	EVER4_paleo-	
Salinity		Salinity	based salinity	Difference:
Station	Ν	(psu)	(psu)	obs - paleo
Long Sound	9126	20.18	11.83	-8.35
Joe Bay	8061	14.54	6.57	-7.97
Little Madeira Bay	9006	23.88	13.73	-10.15
Trout Cove	9215	20.18	13.33	-6.85
Duck Key	8479	30.14	13.40	-16.74
Butternut Key	8700	31.50	13.50	-18.00
mean values		23.40	12.06	-11.34

Conclusions – Three Sediment Cores

A I	• 1		

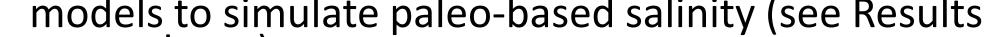
Methods – Three Sediment Cores

Output data from the South Florida Water Management Model Natural System Model (NSM) 4.6.2) were coupled with freshwater wetland paleoecological data to estimate the 1900 CE stage in the southeastern ENP freshwater wetlands.

Down-core pollen assemblages were analyzed to estimate the approximately 1900 CE seasonal average water depth at each sediment core location.

The SFWMM NSM 4.6.2 output data were adjusted to correspond to results of the USGS freshwater wetland paleoecological analyses. These paleo-based stage conditions were used with multivariate linear regression (MLR) salinity models to simulate the resulting pre-drainage salinity conditions in Florida Bay.

This procedure is a modification of methodologies


Step 3: Apply adjustment to NSM 4.6.2 time series by adding 22 cm to each daily depth value.

Step 4: Input adjusted NSM 4.6.2 to MLR salinity

- 1. In the sawgrass marshes of southeastern ENP the paleo-based information from this study suggests a circa 1900 CE hydroperiod of 304-363 days with a water depth of 40-67cm, i.e. pre-drainage water levels were about 0.15 m higher and hydroperiods were about two times longer than existing.
- 2. Our study indicates that a 22 cm adjustment is needed to NSM 4.6.2 to match the hydroperiod characteristics of the EVER4 sediment core (an additional 22 cm of water depth).
- 3. MLR salinity models using NSM 4.6.2 data with a 22 cm adjustment suggest that a return to predrainage (circa 1900CE) conditions in northeastern and central Florida Bay result in salinity reductions of 7-18 psu compared to existing conditions.
- 4. The EVER4 paleo-based estimates of salinity compare well to the p33 and NP206 paleo based mean salinity values.
- 5. The results of both Florida Bay estuarine and freshwater wetland paleoecological investigations provide corroborating information on the closelycoupled Everglades coastal system.

Citation: Marshall, F.E., G.L. Wingard, and P. Pitts. 2009. A simulation of historic hydrology and salinity in Everglades National Park: coupling paleoecologic assemblage data with

developed for estuarine-based paleoecological data collected from Florida Bay (Marshall et al., 2009).

statistical models. Estuaries and Coasts 32: 37–53.